Search results
Results from the WOW.Com Content Network
Such organisms are powered by the heat of combustion of fuel (food) by O 2. Rather than combustion, organisms rely on elaborate sequences of electron-transfer reactions, often coupled to proton transfer. The direct reaction of O 2 with fuel is precluded by the oxygen reduction reaction, which produces water and adenosine triphosphate.
All eukaryotic organisms, including plants, animals, fungi, algae and most protists, need oxygen for cellular respiration, which extracts chemical energy by the reaction of oxygen with organic molecules derived from food and releases carbon dioxide as a waste product.
In industries, oxygen evolution reaction (OER) is a limiting factor in the process of generating molecular oxygen through chemical reactions such as water splitting and electrolysis, and improved OER electrocatalysis is the key to the advancement of a number of renewable energy technologies such as solar fuels, regenerative fuel cells and metal ...
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (14.5 psi).
In normal conditions, the oxygen is reduced to produce water; however, in about 0.1–2% of electrons passing through the chain (this number derives from studies in isolated mitochondria, though the exact rate in live organisms is yet to be fully agreed upon), oxygen is instead prematurely and incompletely reduced to give the superoxide radical ...
The overall reaction can be expressed this way: [10] Glucose + 2 NAD + + 2 P i + 2 ADP → 2 pyruvate + 2 NADH + 2 ATP + 2 H + + 2 H 2 O + energy. Starting with glucose, 1 ATP is used to donate a phosphate to glucose to produce glucose 6-phosphate. Glycogen can be converted into glucose 6-phosphate as well with the help of glycogen phosphorylase.
Photosynthetic prokaryotic organisms that produced O 2 as a byproduct lived long before the first build-up of free oxygen in the atmosphere, [5] perhaps as early as 3.5 billion years ago.
The common mechanism is a free radical chain reaction, where the addition of oxygen gives rise to hydroperoxides and their associated peroxy radicals (ROO•). [5] Typically, an induction period is seen at the start where there is little activity; this is followed by a gradually accelerating take-up of oxygen, giving an autocatalytic reaction ...