enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Organolanthanide chemistry - Wikipedia

    en.wikipedia.org/wiki/Organolanthanide_chemistry

    Metal-carbon σ bonds are found in alkyls of the lanthanide elements such as [LnMe 6] 3− and Ln[CH(SiMe 3) 2] 3. [1] Methyllithium dissolved in THF reacts in stoichiometric ratio with LnCl 3 (Ln = Y, La) to yield Ln(CH 3) 3 probably contaminated with LiCl. Chemical structures of [LnMe6]3- and Ln[CH(SiMe3)2]3

  3. Unpaired electron - Wikipedia

    en.wikipedia.org/wiki/Unpaired_electron

    In chemistry, an unpaired electron is an electron that occupies an orbital of an atom singly, rather than as part of an electron pair. Each atomic orbital of an atom (specified by the three quantum numbers n, l and m) has a capacity to contain two electrons ( electron pair ) with opposite spins .

  4. Lanthanide - Wikipedia

    en.wikipedia.org/wiki/Lanthanide

    Other than Ce(IV) and Eu(II), none of the lanthanides are stable in oxidation states other than +3 in aqueous solution. In terms of reduction potentials, the Ln 0/3+ couples are nearly the same for all lanthanides, ranging from −1.99 (for Eu) to −2.35 V (for Pr). Thus these metals are highly reducing, with reducing power similar to alkaline ...

  5. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    Valence bond theory views bonds as weakly coupled orbitals (small overlap). Valence bond theory is typically easier to employ in ground state molecules. The core orbitals and electrons remain essentially unchanged during the formation of bonds. σ bond between two atoms: localization of electron density Two p-orbitals forming a π-bond.

  6. 18-electron rule - Wikipedia

    en.wikipedia.org/wiki/18-electron_rule

    The rule is based on the fact that the valence orbitals in the electron configuration of transition metals consist of five (n−1)d orbitals, one ns orbital, and three np orbitals, where n is the principal quantum number. These orbitals can collectively accommodate 18 electrons as either bonding or non-bonding electron pairs.

  7. Valence (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Valence_(chemistry)

    The valence is the combining capacity of an atom of a given element, determined by the number of hydrogen atoms that it combines with. In methane, carbon has a valence of 4; in ammonia, nitrogen has a valence of 3; in water, oxygen has a valence of 2; and in hydrogen chloride, chlorine has a valence of 1.

  8. Lanthanide compounds - Wikipedia

    en.wikipedia.org/wiki/Lanthanide_compounds

    All of the lanthanides form sesquioxides, Ln 2 O 3. The lighter (larger) lanthanides adopt a hexagonal 7-coordinate structure while the heavier/smaller ones adopt a cubic 6-coordinate "C-M 2 O 3" structure. [11] All of the sesquioxides are basic, and absorb water and carbon dioxide from air to form carbonates, hydroxides and hydroxycarbonates. [7]

  9. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.