Search results
Results from the WOW.Com Content Network
Features include mixed precision training, single-GPU, multi-GPU, and multi-node training as well as custom model parallelism. The DeepSpeed source code is licensed under MIT License and available on GitHub. [5] The team claimed to achieve up to a 6.2x throughput improvement, 2.8x faster convergence, and 4.6x less communication. [6]
Although the Python interface is more polished and the primary focus of development, PyTorch also has a C++ interface. [14] A number of pieces of deep learning software are built on top of PyTorch, including Tesla Autopilot, [15] Uber's Pyro, [16] Hugging Face's Transformers, [17] PyTorch Lightning, [18] [19] and Catalyst. [20] [21]
Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]
PyTorch Lightning is an open-source Python library that provides a high-level interface for PyTorch, a popular deep learning framework. [1] It is a lightweight and high-performance framework that organizes PyTorch code to decouple research from engineering, thus making deep learning experiments easier to read and reproduce.
MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24] Yes [25] [26] Yes [25] Yes [25] Yes With Parallel Computing Toolbox [27] Yes Microsoft Cognitive ...
As of 2018, SqueezeNet ships "natively" as part of the source code of a number of deep learning frameworks such as PyTorch, Apache MXNet, and Apple CoreML. [ 10 ] [ 11 ] [ 12 ] In addition, third party developers have created implementations of SqueezeNet that are compatible with frameworks such as TensorFlow . [ 13 ]
Horovod is a free and open-source software framework for distributed deep learning training using TensorFlow, Keras, PyTorch, and Apache MXNet. Horovod is hosted under the Linux Foundation AI (LF AI). [3] Horovod has the goal of improving the speed, scale, and resource allocation when training a machine learning model. [4]
The Open Neural Network Exchange (ONNX) [ˈɒnɪks] [2] is an open-source artificial intelligence ecosystem [3] of technology companies and research organizations that establish open standards for representing machine learning algorithms and software tools to promote innovation and collaboration in the AI sector. ONNX is available on GitHub.