Search results
Results from the WOW.Com Content Network
The nutrient artery (arteria nutricia, or central artery), usually accompanied by one or two nutrient veins, enters the bone through the nutrient foramen, runs obliquely through the cortex, sends branches upward and downward to the bone marrow, which ramify in the endosteum–the vascular membrane lining the medullary cavity–and give twigs to the adjoining canals.
The nutrient canal (foramen) is directed away from the growing end of bone. The growing ends of bones in upper limb are upper end of humerus and lower ends of radius and ulna. In lower limb, the lower end of femur and upper end of tibia are the growing ends. [1] The nutrient arteries along with nutrient veins pass through this
In general, arteries and arterioles transport oxygenated blood from the lungs to the body and its organs, and veins and venules transport deoxygenated blood from the body to the lungs. Blood vessels also circulate blood throughout the circulatory system. Oxygen (bound to hemoglobin in red blood cells) is the most critical nutrient carried by ...
The nutrient artery enters via the nutrient foramen from a small opening in the diaphysis. It invades the primary center of ossification, bringing osteogenic cells (osteoblasts on the outside, osteoclasts on the inside.) The canal of the nutrient foramen is directed away from more active end of bone when one end grows more than the other. When ...
2.2 left common carotid artery ... Download as PDF; Printable version; In other projects ... nutrient arteries of radius and ulna;
Other more invasive means can also be used. A cannula or catheter inserted into an artery may be used to measure pulse pressure or pulmonary wedge pressures. Angiography, which involves injecting a dye into an artery to visualise an arterial tree, can be used in the heart (coronary angiography) or brain.
Blood flows from the heart through arteries, which branch and narrow into arterioles, and then branch further into capillaries where nutrients and wastes are exchanged. The capillaries then join and widen to become venules , which in turn widen and converge to become veins , which then return blood back to the heart through the venae cavae .
The converse argument is that generally artery walls are thicker and more muscular than veins as the blood passing through is of a higher pressure. This means that it would take longer for any oxygen to diffuse through to the cells in the tunica adventitia and the tunica media, causing them to need a more extensive vasa vasorum.