Search results
Results from the WOW.Com Content Network
PyTorch Tensors are similar to NumPy Arrays, but can also be operated on a CUDA-capable NVIDIA GPU. PyTorch has also been developing support for other GPU platforms, for example, AMD's ROCm [27] and Apple's Metal Framework. [28] PyTorch supports various sub-types of Tensors. [29]
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
ROCm [3] is an Advanced Micro Devices (AMD) software stack for graphics processing unit (GPU) programming. ROCm spans several domains: general-purpose computing on graphics processing units (GPGPU), high performance computing (HPC), heterogeneous computing.
GPUOpen HIP: A thin abstraction layer on top of CUDA and ROCm intended for AMD and Nvidia GPUs. Has a conversion tool for importing CUDA C++ source. Supports CUDA 4.0 plus C++11 and float16. ZLUDA is a drop-in replacement for CUDA on AMD GPUs and formerly Intel GPUs with near-native performance. [32]
Advanced Micro Devices (AMD) joins the newly-launched PyTorch foundation to create a sustainable ecosystem of open-source projects with PyTorch and drive the growing adoption of AI.
Torch is used by the Facebook AI Research Group, [8] IBM, [9] Yandex [10] and the Idiap Research Institute. [11] Torch has been extended for use on Android [12] [better source needed] and iOS. [13] [better source needed] It has been used to build hardware implementations for data flows like those found in neural networks. [14]
In addition to providing the necessary documentation, AMD employees contribute code to support their hardware and features. [18] All components of the Radeon graphics device driver are developed by core contributors and interested parties worldwide. In 2011, the r300g outperformed Catalyst in some cases.
Many libraries support bfloat16, such as CUDA, [13] Intel oneAPI Math Kernel Library, AMD ROCm, [14] AMD Optimizing CPU Libraries, PyTorch, and TensorFlow. [10] [15] On these platforms, bfloat16 may also be used in mixed-precision arithmetic, where bfloat16 numbers may be operated on and expanded to wider data types.