Ad
related to: optical properties of quantum dots and numbers
Search results
Results from the WOW.Com Content Network
For commercial viability, a range of restricted, heavy-metal-free quantum dots has been developed showing bright emissions in the visible and near-infrared region of the spectrum and have similar optical properties to those of CdSe quantum dots. [citation needed] Among these materials are InP/ZnS, CuInS/ZnS, Si, Ge, and C.
Silicon quantum dots are metal-free biologically compatible quantum dots with photoluminescence emission maxima that are tunable through the visible to near-infrared spectral regions. These quantum dots have unique properties arising from their indirect band gap , including long-lived luminescent excited-states and large Stokes shifts .
A quantum dot single-photon source is based on a single quantum dot placed in an optical cavity. It is an on-demand single-photon source. A laser pulse can excite a pair of carriers known as an exciton in the quantum dot. The decay of a single exciton due to spontaneous emission leads to the emission of a single photon. Due to interactions ...
The prize-awarding academy said that their findings on quantum dots, which in size ratio have the same relationship to a football, as a football to the earth, had "adde
Quantum dots (QDs) are nano-scale semiconductor particles on the order of 2–10 nm in diameter. They possess electrical properties between those of bulk semi-conductors and individual molecules, as well as optical characteristics that make them suitable for applications where fluorescence is desirable, such as medical imaging.
Graphene quantum dots (GQDs) are graphene nanoparticles with a size less than 100 nm. [1] Due to their exceptional properties such as low toxicity, stable photoluminescence , chemical stability and pronounced quantum confinement effect, GQDs are considered as a novel material for biological, opto-electronics, energy and environmental applications.
These nanomaterials have found applications in nanoscale photonic, photovoltaic, and light-emitting diode (LED) devices due to their size-dependent optical and electronic properties. Quantum dots are popular alternatives to organic dyes as fluorescent labels for biological imaging and sensing due to their small size, tuneable emission, and ...
Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons.
Ad
related to: optical properties of quantum dots and numbers