enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [ 1 ] [ 2 ] [ 3 ] The Doppler effect is named after the physicist Christian Doppler , who described the phenomenon in 1842.

  3. Relativistic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Doppler_effect

    Doppler shift with source moving at an arbitrary angle with respect to the line between source and receiver. The analysis used in section Relativistic longitudinal Doppler effect can be extended in a straightforward fashion to calculate the Doppler shift for the case where the inertial motions of the source and receiver are at any specified angle.

  4. Doppler radar - Wikipedia

    en.wikipedia.org/wiki/Doppler_radar

    Doppler Effect: Change of wavelength and frequency caused by motion of the source. The formula for radar Doppler shift is the same as that for reflection of light by a moving mirror. [3] There is no need to invoke Albert Einstein's theory of special relativity, because all observations are made in the same frame of reference. [4]

  5. Dopplergraph - Wikipedia

    en.wikipedia.org/wiki/Dopplergraph

    The word "dopplergraph" is a combination of the words doppler and photograph. Dopplergraphs are two-dimensional records of variations in the doppler shift in light intensity. Dopplergraphs do not need to be a record of the shift of visible light, but of any radiated wave, which includes electromagnetic waves and acoustic waves. [1]

  6. Radar signal characteristics - Wikipedia

    en.wikipedia.org/wiki/Radar_signal_characteristics

    Doppler spectrum. Deliberately no units given (but could be dBu and MHz for example). This is an issue only with a particular type of system; the pulse-Doppler radar, which uses the Doppler effect to resolve velocity from the apparent change in frequency caused by targets that have net radial velocities compared to the radar device. Examination ...

  7. Gravitational redshift - Wikipedia

    en.wikipedia.org/wiki/Gravitational_redshift

    This shift, which the free-falling observer considers to be a kinematical Doppler shift, is thought of by the laboratory observer as a gravitational redshift. Such an effect was verified in the 1959 Pound–Rebka experiment. In a case such as this, where the gravitational field is uniform, the change in wavelength is given by

  8. Ambiguity function - Wikipedia

    en.wikipedia.org/wiki/Ambiguity_function

    In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.

  9. Doppler radio direction finding - Wikipedia

    en.wikipedia.org/wiki/Doppler_radio_direction...

    The magnitude of the shift is a function of the wavelength of the signal and the angular velocity of the antenna: S = ⁠ r W / λ ⁠ Where S is the Doppler shift in frequency (Hz), r is the radius of the circle, W is the angular velocity in radians per second, λ is the target wavelength and c is the speed of light in meters per second. [13]