enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fluid conductance - Wikipedia

    en.wikipedia.org/wiki/Fluid_conductance

    is the conductance, having units of volume/time, which are the same units as pumping speed for a vacuum pump. This definition proves useful in vacuum systems because under conditions of rarefied gas flow, the conductance of various structures is usually constant, and the overall conductance of a complex network of pipes, orifices and other ...

  3. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.

  4. Conductivity (electrolytic) - Wikipedia

    en.wikipedia.org/wiki/Conductivity_(electrolytic)

    Conductivity or specific conductance of an electrolyte solution is a measure of its ability to conduct electricity. The SI unit of conductivity is siemens per meter (S/m). Conductivity measurements are used routinely in many industrial and environmental applications as a fast, inexpensive and reliable way of measuring the ionic content in a ...

  5. Thermal contact conductance - Wikipedia

    en.wikipedia.org/wiki/Thermal_contact_conductance

    In physics, thermal contact conductance is the study of heat conduction between solid or liquid bodies in thermal contact. The thermal contact conductance coefficient , h c {\displaystyle h_{c}} , is a property indicating the thermal conductivity , or ability to conduct heat , between two bodies in contact.

  6. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    The previous conductance equations, written in terms of extensive properties, can be reformulated in terms of intensive properties. Ideally, the formulae for conductance should produce a quantity with dimensions independent of distance, like Ohm's law for electrical resistance, R = V / I {\displaystyle R=V/I\,\!} , and conductance, G = I / V ...

  7. General equation of heat transfer - Wikipedia

    en.wikipedia.org/wiki/General_equation_of_heat...

    For a viscous, Newtonian fluid, the governing equations for mass conservation and momentum conservation are the continuity equation and the Navier-Stokes equations: = = + where is the pressure and is the viscous stress tensor, with the components of the viscous stress tensor given by: = (+) + The energy of a unit volume of the fluid is the sum of the kinetic energy / and the internal energy ...

  8. Alfvén's theorem - Wikipedia

    en.wikipedia.org/wiki/Alfvén's_theorem

    Kelvin's circulation theorem states that vortex tubes moving with an ideal fluid are frozen to the fluid, analogous to how magnetic flux tubes moving with a perfectly conducting ideal-MHD fluid are frozen to the fluid. The ideal induction equation takes the same form as the equation for vorticity ω = ∇ × v in an ideal fluid where v is the ...

  9. Hodgkin–Huxley model - Wikipedia

    en.wikipedia.org/wiki/Hodgkin–Huxley_model

    The Hodgkin–Huxley model, or conductance-based model, is a mathematical model that describes how action potentials in neurons are initiated and propagated. It is a set of nonlinear differential equations that approximates the electrical engineering characteristics of excitable cells such as neurons and muscle cells .