Search results
Results from the WOW.Com Content Network
Fuzzy logic is an important concept in medical decision making. Since medical and healthcare data can be subjective or fuzzy, applications in this domain have a great potential to benefit a lot by using fuzzy-logic-based approaches. Fuzzy logic can be used in many different aspects within the medical decision making framework.
A systematic study of particular t-norm fuzzy logics and their classes began with Hájek's (1998) monograph Metamathematics of Fuzzy Logic, which presented the notion of the logic of a continuous t-norm, the logics of the three basic continuous t-norms (Ćukasiewicz, Gödel, and product), and the 'basic' fuzzy logic BL of all continuous t-norms ...
Although real functions of two variables can be continuous in each variable without being continuous on [0, 1] 2, this is not the case with t-norms: a t-norm T is continuous if and only if it is continuous in one variable, i.e., if and only if the functions f y (x) = T(x, y) are continuous for each y in [0, 1]. Analogous theorems hold for left ...
Type-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and systems so that more uncertainty can be handled. From the beginning of fuzzy sets, criticism was made about the fact that the membership function of a type-1 fuzzy set has no uncertainty associated with it, something that seems to contradict the word fuzzy, since that word has the connotation of much uncertainty.
Fuzzy logic is a form of many-valued logic related to fuzzy sets. Pages in category "Fuzzy logic" The following 63 pages are in this category, out of 63 total.
A fuzzy subset A of a set X is a function A: X → L, where L is the interval [0, 1]. This function is also called a membership function. A membership function is a generalization of an indicator function (also called a characteristic function) of a subset defined for L = {0, 1}.
The structure of a fuzzy system is expressed by the input and output variables and the rule base, while the parameters of a fuzzy system are the rule parameters (defining the membership functions, the aggregation operator and the implication function) and the mapping parameters related to the mapping of a crisp set to a fuzzy set, and vice ...
Fuzzy classification is the process of grouping elements into fuzzy sets [1] whose membership functions are defined by the truth value of a fuzzy propositional function. [2] [3] [4] A fuzzy propositional function is analogous to [5] an expression containing one or more variables, such that when values are assigned to these variables, the expression becomes a fuzzy proposition.