Search results
Results from the WOW.Com Content Network
There are several loopholes to pure const-correctness in C and C++. They exist primarily for compatibility with existing code. The first, which applies only to C++, is the use of const_cast, which allows the programmer to strip the const qualifier, making any object modifiable. The necessity of stripping the qualifier arises when using existing ...
Although static_cast conversions are checked at compile time to prevent obvious incompatibilities, no run-time type checking is performed that would prevent a cast between incompatible data types, such as pointers. A static_cast from a pointer to a class B to a pointer to a derived class D is ill-formed if B is an inaccessible or ambiguous base ...
C++ is also more strict in conversions to enums: ints cannot be implicitly converted to enums as in C. Also, enumeration constants (enum enumerators) are always of type int in C, whereas they are distinct types in C++ and may have a size different from that of int. [needs update] In C++ a const variable must be initialized; in C this is not ...
The first two of these, const and volatile, are also present in C++, and are the only type qualifiers in C++. Thus in C++ the term "cv-qualified type" (for const and volatile) is often used for "qualified type", while the terms "c-qualified type" and "v-qualified type" are used when only one of the qualifiers is relevant.
Even functions can be const in C++. The meaning here is that only a const function may be called for an object instantiated as const; a const function doesn't change any non-mutable data. C# has both a const and a readonly qualifier; its const is only for compile-time constants, while readonly can be used in constructors and other runtime ...
In the C family of languages and ALGOL 68, the word cast typically refers to an explicit type conversion (as opposed to an implicit conversion), causing some ambiguity about whether this is a re-interpretation of a bit-pattern or a real data representation conversion. More important is the multitude of ways and rules that apply to what data ...
I don't know the answer to this question, but it seems like a useful thing to be in this article, if someone else knows. The C-style cast operator (type) is in the table, but what about the special C++ cast operators static_cast<type>(), dynamic_cast<type>(), reinterpret_cast<type>(), and const_cast<type>()? These are mentioned at the top of ...
In C++, run-time type checking is implemented through dynamic_cast. Compile-time downcasting is implemented by static_cast, but this operation performs no type check. If it is used improperly, it could produce undefined behavior.