Search results
Results from the WOW.Com Content Network
A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
List ranking can equivalently be viewed as performing a prefix sum operation on the given list, in which the values to be summed are all equal to one. The list ranking problem can be used to solve many problems on trees via an Euler tour technique, in which one forms a linked list that includes two copies of each edge of the tree, one in each direction, places the nodes of this list into an ...
Classifying advance and retreat edges: Do list ranking on the ETR and save the result in a two-dimensional array A. Then (u,v) is an advance edge iff A(u,v) < A(v,u), and a retreat edge otherwise. Determine the level of each node: Do a prefix sum on the ETR, where every advance edge counts as 1, and every retreat edge counts as −1.
In computer science, a segmented scan is a modification of the prefix sum with an equal-sized array of flag bits to denote segment boundaries on which the scan should be performed. [ 1 ] Example
In computer science, the longest common prefix array (LCP array) is an auxiliary data structure to the suffix array. It stores the lengths of the longest common prefixes (LCPs) between all pairs of consecutive suffixes in a sorted suffix array.
The array L stores the length of the longest common suffix of the prefixes S[1..i] and T[1..j] which end at position i and j, respectively. The variable z is used to hold the length of the longest common substring found so far. The set ret is used to hold the set of strings which are of length z.
Convert the counts of elements in each bucket to a prefix sum, where L b is the number of elements A i in bucket b or less. (L 0 = 0 and L m = n.) Rearrange the input so all elements of each bucket b are stored in positions A i where L b−1 < i ≤ L b. Sort each bucket using insertion sort.