Search results
Results from the WOW.Com Content Network
Tautologies are a key concept in propositional logic, where a tautology is defined as a propositional formula that is true under any possible Boolean valuation of its propositional variables. [2] A key property of tautologies in propositional logic is that an effective method exists for testing whether a given formula is always satisfied (equiv ...
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [ 1 ] and the LaTeX symbol.
In propositional logic, tautology is either of two commonly used rules of replacement. [ 1 ] [ 2 ] [ 3 ] The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs .
However, the term tautology is also commonly used to refer to what could more specifically be called truth-functional tautologies. Whereas a tautology or logical truth is true solely because of the logical terms it contains in general (e.g. " every ", " some ", and "is"), a truth-functional tautology is true because of the logical terms it ...
In mathematics, tautological may refer to: Logic: Tautological consequence; Geometry, where it is used as an alternative to canonical: Tautological bundle; Tautological line bundle; Tautological one-form; Tautology (grammar), unnecessary repetition, or more words than necessary, to say the same thing.
Tautology may refer to: Tautology (language), a redundant statement in literature and rhetoric; Tautology (logic), in formal logic, a statement that is true in every ...
The tee (⊤, \top in LaTeX), also called down tack (as opposed to the up tack) or verum, [1] is a symbol used to represent: . The top element in lattice theory.; The truth value of being true in logic, or a sentence (e.g., formula in propositional calculus) which is unconditionally true.
Tautological consequence can also be defined as ∧ ∧ ... ∧ → is a substitution instance of a tautology, with the same effect. [2]It follows from the definition that if a proposition p is a contradiction then p tautologically implies every proposition, because there is no truth valuation that causes p to be true and so the definition of tautological implication is trivially satisfied.