Ads
related to: zener diode parallel with resistor and current chart
Search results
Results from the WOW.Com Content Network
For example, a diode with a Zener breakdown voltage of 3.2 V exhibits a voltage drop of very nearly 3.2 V across a wide range of reverse currents. The Zener diode is therefore well suited for applications such as the generation of a reference voltage (e.g. for an amplifier stage), or as a voltage stabilizer for low-current applications. [2]
Thus, as long as the Zener current (I Z) is above a certain level (called holding current), the voltage across the Zener diode (V Z) will be constant. Resistor, R1, supplies the Zener current and the base current (I B) of NPN transistor (Q1). The constant Zener voltage is applied across the base of Q1 and emitter resistor, R2.
The Zener effect is primarily exhibited by reverse-biased diodes and bipolar transistor base-emitter junctions that breakdown below about 7 volts. The breakdown is due to internal field emission, since the junctions are thin, and the electric field is high. Zener-type breakdown is shot noise.
The diode, a nonlinear device, is in series with a linear circuit consisting of a resistor, R and a voltage source, V DD. The characteristic curve (curved line) , representing the current I through the diode for any given voltage across the diode V D , is an exponential curve.
These are diodes that conduct in the reverse direction when the reverse bias voltage exceeds the breakdown voltage. These are electrically very similar to Zener diodes (and are often mistakenly called Zener diodes), but break down by a different mechanism: the avalanche effect. This occurs when the reverse electric field applied across the p ...
Above right a voltage regulator can be seen, formed by the current limiting resistor, R3, and the Zener shunt regulator, IC1. If the voltage stability is not too important a Zener diode can be used as a regulator; the two-terminal device would eliminate R4 and R5 used as a resistive voltage divider in the schematic above.
In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor , leading to numerous ...
If no diode is forward-biased then no diode will provide drive current for the output's load (such as a subsequent logic stage). So the output additionally requires a pull-up or pull-down resistor connected to a voltage source, so that the output can transition quickly [a] and provide a strong driving current when no diodes are forward-biased.
Ads
related to: zener diode parallel with resistor and current chart