Search results
Results from the WOW.Com Content Network
Since then catalysts have been in use in a large portion of the chemical industry. In the start only pure components were used as catalysts, but after the year 1900 multicomponent catalysts were studied and are now commonly used in the industry. [1] [2] In the chemical industry and industrial research, catalysis play an important role.
Catalysis (/ k ə ˈ t æ l ə s ɪ s /) is the increase in rate of a chemical reaction due to an added substance known as a catalyst [1] [2] (/ ˈ k æ t əl ɪ s t /). Catalysts are not consumed by the reaction and remain unchanged after it. [3]
The STG+ process uses standard catalysts similar to those used in other gas to liquids technologies, specifically in methanol to gasoline processes. Methanol to gasoline processes favor molecular size- and shape-selective zeolite catalysts, [2] and the STG+ process also utilizes commercially available shape-selective catalysts, such as ZSM-5. [3]
The two most common catalyst geometries used today are honeycomb catalysts and plate catalysts. The honeycomb form usually consists of an extruded ceramic applied homogeneously throughout the carrier or coated on the substrate. Like the various types of catalysts, their configuration also has advantages and disadvantages.
However, independently of the crude oil used in the refinery, all catalysts require a maximum final boiling point of the naphtha feedstock of 180 °C. Normally, the catalyst can be regenerated perhaps 3 or 4 times before it must be returned to the manufacturer for reclamation of the valuable platinum and/or rhenium content. [12] [page needed]
Since heterogeneous electrocatalytic reactions need an electron transfer between the solid catalyst (typically a metal) and the electrolyte, which can be a liquid solution but also a polymer or a ceramic capable of ionic conduction, the reaction kinetics depend on both the catalyst and the electrolyte as well as on the interface between them. [7]
With the high demand for clean fuel and the critical role of the water gas shift reaction in hydrogen fuel cells, the development of water gas shift catalysts for the application in fuel cell technology is an area of current research interest. Catalysts for fuel cell application would need to operate at low temperatures.
The production of the catalyst requires a particular melting process in which used raw materials must be free of catalyst poisons and the promoter aggregates must be evenly distributed in the magnetite melt. Rapid cooling of the magnetite, which has an initial temperature of about 3500 °C, produces the desired precursor.