Search results
Results from the WOW.Com Content Network
A graph with a loop on vertex 1. In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing ...
In an undirected graph, this means that each loop increases the degree of a vertex by two. In a directed graph , the term degree may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at each vertex).
A graph with a loop having vertices labeled by degree. In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. [1]
The latter is more common in other applied sciences (e.g., dynamical systems, physics, network science) where A is sometimes used to describe linear dynamics on graphs. [6] Using the first definition, the in-degrees of a vertex can be computed by summing the entries of the corresponding column and the out-degree of vertex by summing the entries ...
Simple graphs: Graphs without self-loops or multi-edges. Multi-edge graphs: Graphs allowing multiple edges between the same pair of nodes. Loopy graphs: Graphs that include self-loops (edges connecting a node to itself). Directed graphs: Models with specified in-degrees and out-degrees for each node. Undirected graphs: Models that consider the ...
In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. [1]
A simple graph contains no double edges or loops. [1] The degree sequence is a list of numbers in nonincreasing order indicating the number of edges incident to each vertex in the graph. [2] If a simple graph exists for exactly the given degree sequence, the list of integers is called graphic. The Havel-Hakimi algorithm constructs a special ...
The Laplacian matrix of a directed graph is by definition generally non-symmetric, while, e.g., traditional spectral clustering is primarily developed for undirected graphs with symmetric adjacency and Laplacian matrices. A trivial approach to apply techniques requiring the symmetry is to turn the original directed graph into an undirected ...