enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clearing denominators - Wikipedia

    en.wikipedia.org/wiki/Clearing_denominators

    Simplifying this further gives us the solution x = −3. It is easily checked that none of the zeros of x ( x + 1)( x + 2) – namely x = 0 , x = −1 , and x = −2 – is a solution of the final equation, so no spurious solutions were introduced.

  3. Simplification - Wikipedia

    en.wikipedia.org/wiki/Simplification

    Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:

  4. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    This is a common procedure in mathematics, used to reduce fractions or calculate a value for a given variable in a fraction. If we have an equation =, where x is a variable we are interested in solving for, we can use cross-multiplication to determine that =.

  5. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 22, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two, e.g. ⁠ 1 / 8 ⁠ = ⁠ 1 / 2 3 ⁠. In Unicode, precomposed fraction characters are in the Number Forms block.

  6. Algebraic fraction - Wikipedia

    en.wikipedia.org/wiki/Algebraic_fraction

    A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials. Thus 3 x x 2 + 2 x − 3 {\displaystyle {\frac {3x}{x^{2}+2x-3}}} is a rational fraction, but not x + 2 x 2 − 3 , {\displaystyle {\frac {\sqrt {x+2}}{x^{2}-3}},} because the numerator contains a square root function.

  7. Euler's continued fraction formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_continued_fraction...

    Euler derived the formula as connecting a finite sum of products with a finite continued fraction. (+ (+ (+))) = + + + + = + + + +The identity is easily established by induction on n, and is therefore applicable in the limit: if the expression on the left is extended to represent a convergent infinite series, the expression on the right can also be extended to represent a convergent infinite ...

  8. Heaviside cover-up method - Wikipedia

    en.wikipedia.org/wiki/Heaviside_cover-up_method

    When a partial fraction term has a single (i.e. unrepeated) binomial in the denominator, the numerator is a residue of the function defined by the input fraction. We calculate each respective numerator by (1) taking the root of the denominator (i.e. the value of x that makes the denominator zero) and (2) then substituting this root into the ...

  9. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    For the folded general continued fractions of both expressions, the rate convergence μ = (3 − √ 8) 2 = 17 − √ 288 ≈ 0.02943725, hence ⁠ 1 / μ ⁠ = (3 + √ 8) 2 = 17 + √ 288 ≈ 33.97056, whose common logarithm is 1.531... ≈ ⁠ 26 / 17 ⁠ > ⁠ 3 / 2 ⁠, thus adding at least three digits per two terms. This is because the ...