Search results
Results from the WOW.Com Content Network
Inputs: A, b, ω Output: φ Choose an initial guess φ to the solution repeat until convergence for i from 1 until n do set σ to 0 for j from 1 until n do if j ≠ i then set σ to σ + a ij φ j end if end (j-loop) set φ i to (1 − ω)φ i + ω(b i − σ) / a ii end (i-loop) check if convergence is reached end (repeat) Note
In computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement . Unlike other for loop constructs, however, foreach loops [ 1 ] usually maintain no explicit counter: they essentially say "do this to everything in this ...
This case yields no solution. Example: x = 1, x = 2. M > N but only K equations (K < M and K ≤ N+1) are linearly independent. There exist three possible sub-cases of this: K = N+1. This case yields no solutions. Example: 2x = 2, x = 1, x = 2. K = N. This case yields either a single solution or no solution, the latter occurring when the ...
algorithm Gauss–Seidel method is inputs: A, b output: φ Choose an initial guess φ to the solution repeat until convergence for i from 1 until n do σ ← 0 for j from 1 until n do if j ≠ i then σ ← σ + a ij φ j end if end (j-loop) φ i ← (b i − σ) / a ii end (i-loop) check if convergence is reached end (repeat)
The solution set of a given set of equations or inequalities is the set of all its solutions, a solution being a tuple of values, one for each unknown, that satisfies all the equations or inequalities. If the solution set is empty, then there are no values of the unknowns that satisfy simultaneously all equations and inequalities.
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.
a set of algebraic equations for steady-state problems; and; a set of ordinary differential equations for transient problems. These equation sets are element equations. They are linear if the underlying PDE is linear and vice versa. Algebraic equation sets that arise in the steady-state problems are solved using numerical linear algebraic methods.