enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The Lotka–Volterra predator-prey model makes a number of assumptions about the environment and biology of the predator and prey populations: [5] The prey population finds ample food at all times. The food supply of the predator population depends entirely on the size of the prey population.

  3. Trophic function - Wikipedia

    en.wikipedia.org/wiki/Trophic_function

    A trophic function was first introduced in the differential equations of the Kolmogorov predatorprey model. It generalizes the linear case of predatorprey interaction firstly described by Volterra and Lotka in the Lotka–Volterra equation. A trophic function represents the consumption of prey assuming a given number of predators.

  4. Metapopulation - Wikipedia

    en.wikipedia.org/wiki/Metapopulation

    When the prey would become extinct locally at one habitat patch, they were able to reestablish by migrating to new patches before being attacked by predators. This habitat spatial structure of patches allowed for coexistence between the predator and prey species and promoted a stable population oscillation model. [6]

  5. Paradox of the pesticides - Wikipedia

    en.wikipedia.org/wiki/Paradox_of_the_Pesticides

    Predatorprey isoclines before and after pesticide application. Pest abundance has increased. Now, to account for the difference in the population dynamics of the predator and prey that occurs with the addition of pesticides, variable q is added to represent the per capita rate at which both species are killed by the pesticide. The original ...

  6. Arditi–Ginzburg equations - Wikipedia

    en.wikipedia.org/wiki/Arditi–Ginzburg_equations

    Because the number of prey harvested by each predator decreases as predators become more dense, ratio-dependent predation is a way of incorporating predator intraspecific competition for food. Ratio-dependent predation may account for heterogeneity in large-scale natural systems in which predator efficiency decreases when prey is scarce. [1]

  7. Huffaker's mite experiment - Wikipedia

    en.wikipedia.org/wiki/Huffaker's_mite_experiment

    Huffaker was expanding upon Gause's experiments by further introducing heterogeneity. Gause's experiments had found that predator and prey populations would become extinct regardless of initial population size. However, Gause also concluded that a predatorprey community could be self-sustaining if there were refuges for the prey population.

  8. Predator-prey model - Wikipedia

    en.wikipedia.org/?title=Predator-prey_model&...

    This page was last edited on 29 September 2015, at 23:03 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  9. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    This model can be generalized to any number of species competing against each other. One can think of the populations and growth rates as vectors, α 's as a matrix.Then the equation for any species i becomes = (=) or, if the carrying capacity is pulled into the interaction matrix (this doesn't actually change the equations, only how the interaction matrix is defined), = (=) where N is the ...