enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexadecagon - Wikipedia

    en.wikipedia.org/wiki/Hexadecagon

    There are 4 dihedral subgroups: Dih 8, Dih 4, Dih 2, and Dih 1, and 5 cyclic subgroups: Z 16, Z 8, Z 4, Z 2, and Z 1, the last implying no symmetry. On the regular hexadecagon, there are 14 distinct symmetries. John Conway labels full symmetry as r32 and no symmetry is labeled a1.

  3. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    A principal diagonal of a hexagon is a diagonal which divides the hexagon into quadrilaterals. In any convex equilateral hexagon (one with all sides equal) with common side a, there exists [11]: p.184, #286.3 a principal diagonal d 1 such that and a principal diagonal d 2 such that

  4. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    The diagonals divide the polygon into 1, 4, 11, 24, ... pieces. [ a ] For a regular n -gon inscribed in a circle of radius 1 {\displaystyle 1} , the product of the distances from a given vertex to all other vertices (including adjacent vertices and vertices connected by a diagonal) equals n .

  5. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]

  6. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    If the incircle is tangent to the sides AB, BC, CD, DA at T 1, T 2, T 3, T 4 respectively, and if N 1, N 2, N 3, N 4 are the isotomic conjugates of these points with respect to the corresponding sides (that is, AT 1 = BN 1 and so on), then the Nagel point of the tangential quadrilateral is defined as the intersection of the lines N 1 N 3 and N ...

  7. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    It can also be derived directly from the trigonometric formula for the area of a tangential quadrilateral. Note that the converse does not hold: Some quadrilaterals that are not bicentric also have area =. [12] One example of such a quadrilateral is a non-square rectangle.

  8. Diagonal - Wikipedia

    en.wikipedia.org/wiki/Diagonal

    The diagonals of a cube with side length 1. AC' (shown in blue) is a space diagonal with length , while AC (shown in red) is a face diagonal and has length . In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal.

  9. Liu Hui's π algorithm - Wikipedia

    en.wikipedia.org/wiki/Liu_Hui's_π_algorithm

    The area within a circle is equal to the radius multiplied by half the circumference, or A = r x C /2 = r x r x π.. Liu Hui argued: "Multiply one side of a hexagon by the radius (of its circumcircle), then multiply this by three, to yield the area of a dodecagon; if we cut a hexagon into a dodecagon, multiply its side by its radius, then again multiply by six, we get the area of a 24-gon; the ...