enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    The speed of gravitational waves in the general theory of relativity is equal to the speed of light in vacuum, c. [3] Within the theory of special relativity, the constant c is not only about light; instead it is the highest possible speed for any interaction in nature.

  3. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In the absence of any other forces, a particle orbiting another under the influence of Newtonian gravity follows the same perfect ellipse eternally. The presence of other forces (such as the gravitation of other planets), causes this ellipse to rotate gradually. The rate of this rotation (called orbital precession) can be measured very accurately.

  4. Precession - Wikipedia

    en.wikipedia.org/wiki/Precession

    As the Earth travels around the Sun, its elliptical orbit rotates gradually over time. The eccentricity of its ellipse and the precession rate of its orbit are exaggerated for visualization. Most orbits in the Solar System have a much smaller eccentricity and precess at a much slower rate, making them nearly circular and nearly stationary.

  5. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    The tangential speed of Earth's rotation at a point on Earth can be approximated by multiplying the speed at the equator by the cosine of the latitude. [42] For example, the Kennedy Space Center is located at latitude 28.59° N, which yields a speed of: cos(28.59°) × 1,674.4 km/h = 1,470.2 km/h.

  6. Seismic velocity structure - Wikipedia

    en.wikipedia.org/wiki/Seismic_Velocity_Structure

    The velocity structure of the Earth. The red line is the P-wave velocity, the blue line is the S-wave velocity, and the green line density. (Data was adopted from the RockHound Python library.) Seismic velocity structure is the distribution and variation of seismic wave speeds within Earth's and other planetary bodies' subsurface.

  7. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). [2] [3] It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm

  8. Gravitational collapse - Wikipedia

    en.wikipedia.org/wiki/Gravitational_collapse

    The radii of larger mass neutron stars (about 2.8 solar mass) [13] are estimated to be about 12 km, or approximately 2 times their equivalent Schwarzschild radius. It might be thought that a sufficiently massive neutron star could exist within its Schwarzschild radius (1.0 SR) and appear like a black hole without having all the mass compressed ...

  9. Stability of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Stability_of_the_Solar_System

    The planets' orbits are chaotic over longer time scales, in such a way that the whole Solar System possesses a Lyapunov time in the range of 2~230 million years. [3] In all cases, this means that the positions of individual planets along their orbits ultimately become impossible to predict with any certainty.