Search results
Results from the WOW.Com Content Network
The focused ion beam has become a powerful tool for site-specific 3D imaging of sub-micron features in a sample. In this FIB tomography technique, the sample is sequentially milled using an ion beam perpendicular to the specimen while imaging the newly exposed surface using an electron beam.
In plasma physics, an ion acoustic wave is one type of longitudinal oscillation of the ions and electrons in a plasma, much like acoustic waves traveling in neutral gas. However, because the waves propagate through positively charged ions, ion acoustic waves can interact with their electromagnetic fields , as well as simple collisions.
For a minimal introduction of stress and bending to transmission electron microscopy (TEM) samples (lamellae, thin films, and other mechanically and beam sensitive samples), when transferring inside a focused ion beam (FIB), flexible metallic nanowires can be attached to a typically rigid micromanipulator.
As the helium ion beam interacts with the sample, it does not suffer from a large excitation volume, and hence provides sharp images with a large depth of field on a wide range of materials. Compared to a SEM, the secondary electron yield is quite high, allowing for imaging with currents as low as 1 femtoamp. The detectors provide information ...
The configuration of the ion beam apparatus can be changed and made more complex with the incorporation of additional components. The techniques for ion beam analysis are designed for specific purposes. Some techniques and ion sources are shown in table 1. Detector types and arrangements for ion beam techniques are shown in table 2.
A secondary ion mass spectrometer consists of (1) a primary ion gun generating the primary ion beam, (2) a primary ion column, accelerating and focusing the beam onto the sample (and in some devices an opportunity to separate the primary ion species by Wien filter or to pulse the beam), (3) high vacuum sample chamber holding the sample and the ...
Ion-beam lithography offers higher resolution patterning than UV, X-ray, or electron beam lithography because these heavier particles have more momentum. This gives the ion beam a smaller wavelength than even an e-beam and therefore almost no diffraction. The momentum also reduces scattering in the target and in any residual gas.
The ions gain velocity by an electrical potential gradient and are focused into a beam by electrostatic lenses. The ion beam then passes through the magnetic field of the electromagnet where it is partitioned into separate ion beams based on the ion's mass/charge ratio. These mass-resolved beams are directed into a detector where it is ...