Search results
Results from the WOW.Com Content Network
Similar figures. In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other.More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly with additional translation, rotation and reflection.
[2] and 1969 - using the term "dilative rotation" - in his book Introduction to Geometry. [3] The following theorem is important for the Euclidean plane: Any two directly similar figures are related either by a translation or by a spiral similarity. [4] (Hint: Directly similar figures are similar and have the same orientation)
The term, coined by French mathematician Michel Chasles, is derived from two Greek elements: the prefix homo-(όμο ' similar '}; and transl. grc – transl. thesis (Θέσις) ' position '). It describes the relationship between two figures of the same shape and orientation.
In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other. [ 1 ] More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry , i.e., a combination of rigid motions , namely a ...
Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.
The idea of self-similar curves was taken further by Paul Lévy, who, in his 1938 paper Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole, described a new fractal curve, the Lévy C curve. [notes 1] A strange attractor that exhibits multifractal scaling Uniform mass center triangle fractal 2x 120 degrees recursive IFS
Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]
A figure is a representation including both shape and size (as in, e.g., figure of the Earth). A plane shape or plane figure is constrained to lie on a plane, in contrast to solid 3D shapes. A two-dimensional shape or two-dimensional figure (also: 2D shape or 2D figure) may lie on a more general curved surface (a two-dimensional space).