Search results
Results from the WOW.Com Content Network
The soil erodibility factor K can be approximated from a nomograph if this information is known. The LS factors can easily be determined from a slope effect chart by knowing the length and gradient of the slope. The cropping management factor (C) and conservation practices factor (P) are more difficult to obtain and must be determined ...
Soil erodibility is a lumped parameter that represents an integrated annual value of the soil profile reaction to the process of soil detachment and transport by raindrops and surface flow. [1] The most commonly used model for predicting soil loss from water erosion is the Universal Soil Loss Equation (USLE) (also known as the K-factor ...
From the change in diameter of the hole over time, the rate of erosion can thus be plotted against applied hydraulic shear stress and fit to the following equation: [1] [4] = where E r is the rate of erosion over time, k d is the soil erodibility, and τ c is the critical shear stress for erosion.
This equation incorporates several key variables: the Soil Erodibility Index (I), which measures the susceptibility of soil to erosion; the Soil Ridge Roughness Factor (K), reflecting the surface roughness and its impact on wind flow; the Climatic Factor (C), representing the influence of wind speed and frequency on erosion; the Unsheltered ...
where R is the rainfall erosivity factor, [99] [100] K is the soil erodibility factor, [101] L and S are topographic factors [102] representing length and slope, [103] C is the cover and management factor [104] and P is the support practices factor. [105]
The erosion index (EI, also called the erodibility index) is created by dividing potential erosion (from all sources except gully erosion) by the T value, which is the rate of soil erosion above which long term productivity may be adversely affected.
Conceptually, the process of tillage erosion (E Ti) can be described as a function of tillage erosivity (ET) and landscape erodibility (EL): [9]. E Ti = f(ET, EL) . Tillage erosivity (ET) is defined as the propensity of a tillage operation, or a sequence of operations, to erode soil and is affected by the design and operation of the tillage implement (e.g., the size, arrangement and shape of ...
The NRCS curve number is related to soil type, soil infiltration capability, land use, and the depth of the seasonal high water table. To account for different soils' ability to infiltrate, NRCS has divided soils into four hydrologic soil groups (HSGs). They are defined as follows. [1]