enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    A graphical tool for assessing normality is the normal probability plot, a quantile-quantile plot (QQ plot) of the standardized data against the standard normal distribution. Here the correlation between the sample data and normal quantiles (a measure of the goodness of fit) measures how well the data are modeled by a normal distribution. For ...

  3. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  4. Probability plot correlation coefficient plot - Wikipedia

    en.wikipedia.org/wiki/Probability_plot...

    λ = 0.14: distribution is approximately normal; λ = 0.5: distribution is U-shaped; λ = 1: distribution is exactly uniform(−1, 1) If the Tukey lambda PPCC plot gives a maximum value near 0.14, one can reasonably conclude that the normal distribution is a good model for the data.

  5. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. A normal probability plot. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed.

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  7. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Wilk_test

    The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  8. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In the case of normalization of scores in educational assessment, there may be an intention to align distributions to a normal distribution. A different approach to normalization of probability distributions is quantile normalization , where the quantiles of the different measures are brought into alignment.

  9. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    To assess whether normality has been achieved after transformation, any of the standard normality tests may be used. A graphical approach is usually more informative than a formal statistical test and hence a normal quantile plot is commonly used to assess the fit of a data set to a normal population.