Search results
Results from the WOW.Com Content Network
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
Example: as shown in the following figure of Floyd's triangle, 25 is a centered square number, and is the sum of the square 16 (yellow rhombus formed by shearing a square) and of the next smaller square, 9 (sum of two blue triangles): Centered square numbers (in red) are in the center of odd rows of Floyd's triangle.
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
Of the primes occurring in this decomposition, 2, 5, and 7, only 7 is congruent to 3 modulo 4. Its exponent in the decomposition, 2, is even. Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the ...
Fortunate numbers: 3, 5, 7, 13, 23, 17, 19, 23, 37, 61, ... The smallest integer m > 1 such that p n # + m is a prime number, where the primorial p n # is the product of the first n prime numbers. A005235: Semiperfect numbers: 6, 12, 18, 20, 24, 28, 30, 36, 40, 42, ... A natural number n that is equal to the sum of all or some of its proper ...
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
A powerful number is a positive integer m such that for every prime number p dividing m, p 2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a 2 b 3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full.