Search results
Results from the WOW.Com Content Network
The usual argument to compute the sum of the binomial series goes as follows. Differentiating term-wise the binomial series within the disk of convergence | x | < 1 and using formula , one has that the sum of the series is an analytic function solving the ordinary differential equation (1 + x)u′(x) − αu(x) = 0 with initial condition u(0) = 1.
William Betz was active in the movement to reform mathematics in the United States at that time, had written many texts on elementary mathematics topics and had "devoted his life to the improvement of mathematics education". [3] Many students and educators in the US now use the word "FOIL" as a verb meaning "to expand the product of two ...
In mathematics, the binomial differential equation is an ordinary differential equation of the form (′) = (,), where is a natural number and (,) is a polynomial that is analytic in both variables. [ 1 ] [ 2 ]
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.
A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form , where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
The Gaussian binomial coefficients are defined by: [1] = () (+) () ()where m and r are non-negative integers. If r > m, this evaluates to 0.For r = 0, the value is 1 since both the numerator and denominator are empty products.