Search results
Results from the WOW.Com Content Network
Paraboloid of revolution. In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid made by a plane parallel to
Solid paraboloid of revolution around z-axis: a = the radius of the base circle h = the height of the paboloid from the base cicle's center to the edge ...
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes.A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.
A portion of the curve x = 2 + cos(z) rotated around the z-axis A torus as a square revolved around an axis parallel to one of its diagonals.. A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). [1]
The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces. The plane is the only surface which contains at least three distinct lines through each of its points (Fuchs & Tabachnikov 2007). The properties of being ruled or doubly ruled are preserved by projective maps, and therefore are concepts of projective geometry.
[2] [3] The reflector is a metallic surface formed into a paraboloid of revolution and usually truncated in a circular rim that forms the diameter of the antenna. [2] In a transmitting antenna, radio frequency current from a transmitter is supplied through a transmission line cable to the feed antenna, which converts it into radio waves. The ...
Paraboloidal coordinates are three-dimensional orthogonal coordinates (,,) that generalize two-dimensional parabolic coordinates.They possess elliptic paraboloids as one-coordinate surfaces.
Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...