enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]

  3. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    The difference between the height of each man in the sample and the unobservable population mean is a statistical error, whereas; The difference between the height of each man in the sample and the observable sample mean is a residual.

  4. Observational error - Wikipedia

    en.wikipedia.org/wiki/Observational_error

    When either randomness or uncertainty modeled by probability theory is attributed to such errors, they are "errors" in the sense in which that term is used in statistics; see errors and residuals in statistics. Every time a measurement is repeated, slightly different results are obtained.

  5. Calibration (statistics) - Wikipedia

    en.wikipedia.org/wiki/Calibration_(statistics)

    There are two main uses of the term calibration in statistics that denote special types of statistical inference problems. Calibration can mean a reverse process to regression, where instead of a future dependent variable being predicted from known explanatory variables, a known observation of the dependent variables is used to predict a corresponding explanatory variable; [1]

  6. ANOVA gauge R&R - Wikipedia

    en.wikipedia.org/wiki/ANOVA_gauge_R&R

    It is important to understand the difference between accuracy and precision to understand the purpose of Gage R&R. Gage R&R addresses only the precision of a measurement system. It is common to examine the P/T ratio which is the ratio of the precision of a measurement system to the (total) tolerance of the manufacturing process of which it is a ...

  7. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Bias should be accounted for at every step of the data collection process, beginning with clearly defined research parameters and consideration of the team who will be conducting the research. [2] Observer bias may be reduced by implementing a blind or double-blind technique. Avoidance of p-hacking is essential to the process of accurate data ...

  8. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. [1] Type I error: an innocent person may be convicted. Type II error: a guilty person may be not convicted.

  9. Forecast error - Wikipedia

    en.wikipedia.org/wiki/Forecast_error

    If a main application of the forecast is to predict when certain thresholds will be crossed, one possible way of assessing the forecast is to use the timing-error—the difference in time between when the outcome crosses the threshold and when the forecast does so.