Search results
Results from the WOW.Com Content Network
As an action potential (nerve impulse) travels down an axon there is a change in electric polarity across the membrane of the axon. In response to a signal from another neuron, sodium- (Na +) and potassium- (K +)–gated ion channels open and close as the membrane reaches its threshold potential.
A neuron, neurone, [1] or nerve cell is an excitable cell that fires electric signals called action potentials across a neural network in the nervous system.They are located in the brain and spinal cord and help to receive and conduct impulses.
there is an inverse relationship between excitability of a neuron and its size. Together, these relationship were termed the "size principle". Decades of research elaborated on these initial finding on motor neuron properties and recruitment of motor units (neuron + muscle fibers), [ 7 ] and the relationship between neuron excitability and its ...
Abnormalities in neuronal excitability have been noted in amyotrophic lateral sclerosis and diabetes patients. While the mechanism ultimately responsible for the variance differs between the two conditions, tests through a response to ischemia indicate a similar resistance, ironically, to ischemia and resulting paresthesias.
A diagram of a typical central nervous system synapse. The spheres located in the upper neuron contain neurotransmitters that fuse with the presynaptic membrane and release neurotransmitters into the synaptic cleft.
Cell excitability is the change in membrane potential that is necessary for cellular responses in various tissues. Cell excitability is a property that is induced during early embriogenesis. [27] Excitability of a cell has also been defined as the ease with which a response may be triggered. [28]
The neurotransmitter most often associated with EPSPs is the amino acid glutamate, and is the main excitatory neurotransmitter in the central nervous system of vertebrates. [2]
After nerve damage or repeated stimulation, WDR (wide dynamic range) neurons experience a general increase in excitability. [5] This hyper-excitability can be caused by an increased neuronal response to a noxious stimulus (hyperalgesia), a larger neuronal receptive field, or spread of the hyper-excitability to other segments. [5]