Search results
Results from the WOW.Com Content Network
The other pathway, non-cyclic photophosphorylation, is a two-stage process involving two different chlorophyll photosystems in the thylakoid membrane. First, a photon is absorbed by chlorophyll pigments surrounding the reaction core center of photosystem II.
If electrons only pass through once, the process is termed noncyclic photophosphorylation, but if they pass through PSI and the proton pump multiple times it is called cyclic photophosphorylation. When the electron reaches photosystem I, it fills the electron deficit of light-excited reaction-center chlorophyll P700 + of PSI.
Noncyclic photophosphorylation through light-dependent reactions of photosynthesis at the thylakoid membrane. Photosynthesis is the process in which light energy is absorbed and converted to chemical energy. This chemical energy is eventually used in the conversion of carbon dioxide to sugar in plants.
In non-cyclic photophosphorylation, ferredoxin is the last electron acceptor thus reducing the enzyme NADP + reductase. It accepts electrons produced from sunlight - excited chlorophyll and transfers them to the enzyme ferredoxin: NADP + oxidoreductase EC 1.18.1.2 .
Cyclic electron transport or cyclic photophosphorylation produces only ATP. The noncyclic variety involves the participation of both photosystems, while the cyclic electron flow is dependent on only photosystem I. Photosystem I uses light energy to reduce NADP + to NADPH + H +, and is active in both noncyclic and cyclic electron transport. In ...
In cyclic photophosphorylation, cytochrome b 6 f uses electrons and energy from PSI to create more ATP and to stop the production of NADPH. Cyclic phosphorylation is important to create ATP and maintain NADPH in the right proportion for the light-independent reactions. The net-reaction of all light-dependent reactions in oxygenic photosynthesis ...
Water-splitting process: Electron transport and regulation. The first level ( A ) shows the original Kok model of the S-states cycling, the second level ( B ) shows the link between the electron transport (S-states advancement) and the relaxation process of the intermediate S-states ([YzSn], n=0,1,2,3) formation
P700 receives energy from antenna molecules and uses the energy from each photon to raise an electron to a higher energy level (P700*). These electrons are moved in pairs in an oxidation/reduction process from P700* to electron acceptors, leaving behind P700 +. The pair of P700* - P700 + has an electric potential of about −1.2 volts.