Search results
Results from the WOW.Com Content Network
The more massive star explodes first, leaving behind a neutron star. If the explosion does not kick the second star away, the binary system survives. The neutron star can now be visible as a radio pulsar, and it slowly loses energy and spins down. Later, the second star can swell up, allowing the neutron star to suck up its matter.
Tracing the y component of a circle while going around the circle results in a sine wave (red). Tracing the x component results in a cosine wave (blue). Both waves are sinusoids of the same frequency but different phases. A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine ...
At what is called the star's death (when a star has burned out its fuel supply), it will undergo a contraction that can be halted only if it reaches a new state of equilibrium. Depending on the mass during its lifetime, these stellar remnants can take one of three forms: White dwarfs, in which gravity is opposed by electron degeneracy pressure [4]
The Hertzsprung progression in the light curve morphology of classical (singly periodic) Cepheids is the result of a well-known 2:1 resonance among the fundamental pulsation mode and the second overtone mode. [14] The amplitude equation can be further extended to nonradial stellar pulsations. [15] [16]
The intense radiation of most observed GRBs is thought to be released during a supernova or superluminous supernova as a high-mass star implodes to form a neutron star or a black hole. From gravitational wave observations, short-duration (sGRB) events describe a subclass of GRB signals that are now known to originate from the cataclysmic merger ...
The shock wave and extremely high temperature and pressure rapidly dissipate but are present for long enough to allow for a brief period during which the production of elements heavier than iron occurs. [3] Depending on initial mass of the star, the remnants of the core form a neutron star or a black hole. Because of the underlying mechanism ...
Astronomers have discovered what they believe is the biggest known batch of planet-making ingredients swirling around a young star. The diameter of this colossal disk is roughly 3,300 times the ...
By linearly perturbing the equations defining the mechanical equilibrium of a star (i.e. mass conservation and hydrostatic equilibrium) and assuming that the perturbations are adiabatic, one can derive a system of four differential equations whose solutions give the frequency and structure of a star's modes of oscillation.