enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent . Such networks are commonly depicted in the manner shown at the top of the figure, where f {\displaystyle \textstyle f} is shown as dependent upon itself.

  3. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    Graph attention network is a combination of a graph neural network and an attention layer. The implementation of attention layer in graphical neural networks helps provide attention or focus to the important information from the data instead of focusing on the whole data. A multi-head GAT layer can be expressed as follows:

  4. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    In the mathematical theory of artificial neural networks, universal approximation theorems are theorems [1] [2] of the following form: Given a family of neural networks, for each function from a certain function space, there exists a sequence of neural networks ,, … from the family, such that according to some criterion.

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  6. Graphical model - Wikipedia

    en.wikipedia.org/wiki/Graphical_model

    Example of a directed acyclic graph on four vertices. If the network structure of the model is a directed acyclic graph, the model represents a factorization of the joint probability of all random variables. More precisely, if the events are , …, then the joint probability satisfies

  7. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Human pose estimation 2011 [203] S. Johnson and M. Everingham MCQ Dataset 6 different real multiple choice-based exams (735 answer sheets and 33,540 answer boxes) to evaluate computer vision techniques and systems developed for multiple choice test assessment systems. None 735 answer sheets and 33,540 answer boxes Images and .mat file labels

  8. Erdős–Rényi model - Wikipedia

    en.wikipedia.org/wiki/Erdős–Rényi_model

    There are two closely related variants of the Erdős–Rényi random graph model. A graph generated by the binomial model of Erdős and Rényi (p = 0.01)In the (,) model, a graph is chosen uniformly at random from the collection of all graphs which have nodes and edges.

  9. Exponential family random graph models - Wikipedia

    en.wikipedia.org/wiki/Exponential_family_random...

    Exponential Random Graph Models (ERGMs) are a family of statistical models for analyzing data from social and other networks. [1] [2] Examples of networks examined using ERGM include knowledge networks, [3] organizational networks, [4] colleague networks, [5] social media networks, networks of scientific development, [6] and others.