Search results
Results from the WOW.Com Content Network
1. Strict inequality between two numbers; means and is read as "less than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2.
unstrict inequality signs (less-than or equals to sign and greater-than or equals to sign) 1670 (with the horizontal bar over the inequality sign, rather than below it) John Wallis: 1734 (with double horizontal bar below the inequality sign) Pierre Bouguer
The notation a ≤ b or a ⩽ b or a ≦ b means that a is less than or equal to b (or, equivalently, at most b, or not greater than b). The notation a ≥ b or a ⩾ b or a ≧ b means that a is greater than or equal to b (or, equivalently, at least b, or not less than b). In the 17th and 18th centuries, personal notations or typewriting signs ...
The greater-than sign is a mathematical symbol that denotes an inequality between two values. The widely adopted form of two equal-length strokes connecting in an acute angle at the right, >, has been found in documents dated as far back as 1631. [1]
A number is positive if it is greater than zero. A number is negative if it is less than zero. A number is non-negative if it is greater than or equal to zero. A number is non-positive if it is less than or equal to zero. When 0 is said to be both positive and negative, [citation needed] modified phrases are used to refer to the sign of a number:
A linear inequality contains one of the symbols of inequality: [1] < less than > greater than; ≤ less than or equal to; ≥ greater than or equal to; ≠ not equal to; A linear inequality looks exactly like a linear equation, with the inequality sign replacing the equality sign.
Mathematical Operators is a Unicode block containing characters for mathematical, logical, and set notation.. Notably absent are the plus sign (+), greater than sign (>) and less than sign (<), due to them already appearing in the Basic Latin Unicode block, and the plus-or-minus sign (±), multiplication sign (×) and obelus (÷), due to them already appearing in the Latin-1 Supplement block ...
Which states that "The set of all integers greater than 0 but not more than 3 is equal to the set containing only 1, 2, and 3", despite the differences in notation. José Ferreirós credits Richard Dedekind for being the first to explicitly state the principle, (although he does not assert it as a definition):