Search results
Results from the WOW.Com Content Network
In thermodynamics, the ebullioscopic constant K b relates molality b to boiling point elevation. [1] It is the ratio of the latter to the former: = i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved. b is the molality of the solution.
K b, the ebullioscopic constant, which is dependent on the properties of the solvent. It can be calculated as K b = RT b 2 M/ΔH v, where R is the gas constant, and T b is the boiling temperature of the pure solvent [in K], M is the molar mass of the solvent, and ΔH v is the heat of vaporization per mole of the solvent.
The K b values for dissociation of spermine protonated at one or other of the sites are examples of micro-constants. They cannot be determined directly by means of pH, absorbance, fluorescence or NMR measurements; a measured K b value is the sum of the K values for the micro-reactions.
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.
The Gran plot is based on the Nernst equation which can be written as = + {+} where E is a measured electrode potential, E 0 is a standard electrode potential, s is the slope, ideally equal to RT/nF, and {H +} is the activity of the hydrogen ion.
The Benesi–Hildebrand method is a mathematical approach used in physical chemistry for the determination of the equilibrium constant K and stoichiometry of non-bonding interactions. This method has been typically applied to reaction equilibria that form one-to-one complexes, such as charge-transfer complexes and host–guest molecular ...
The most widely used electrode is the glass electrode, which is selective for the hydrogen ion. This is suitable for all acid–base equilibria. log 10 β values between about 2 and 11 can be measured directly by potentiometric titration using a glass electrode.
The number ratio can be related to the various units for concentration of a solution such as molarity, molality, normality (chemistry), etc. The assumption that solution properties are independent of nature of solute particles is exact only for ideal solutions , which are solutions that exhibit thermodynamic properties analogous to those of an ...