Search results
Results from the WOW.Com Content Network
Graph traversal is a subroutine in most graph algorithms. The goal of a graph traversal algorithm is to visit (and / or process) every node of a graph. Graph traversal algorithms, like breadth-first search and depth-first search, are analyzed using the von Neumann model, which assumes uniform memory access cost. This view neglects the fact ...
When working with graphs that are too large to store explicitly (or infinite), it is more practical to describe the complexity of breadth-first search in different terms: to find the nodes that are at distance d from the start node (measured in number of edge traversals), BFS takes O(b d + 1) time and memory, where b is the "branching factor ...
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms.
A universal traversal sequence is a sequence of instructions comprising a graph traversal for any regular graph with a set number of vertices and for any starting vertex. A probabilistic proof was used by Aleliunas et al. to show that there exists a universal traversal sequence with number of instructions proportional to O ( n 5 ) for any ...
Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...
Given that Gremlin is a language, an instruction set, and a virtual machine, it is possible to design another traversal language that compiles to the Gremlin traversal machine (analogous to how Scala compiles to the JVM). For instance, the popular SPARQL graph pattern match language can be compiled to execute on the Gremlin machine. The ...
For traversals without change of direction, the average complexity is (), because a full traversal takes steps for a BST of size , 1 step for edge up and 1 for edge down. The worst-case complexity is O ( h ) {\displaystyle {\mathcal {O}}(h)} with h {\displaystyle h} as the height of the tree.
The recursive implementation will visit the nodes from the example graph in the following order: A, B, D, F, E, C, G. The non-recursive implementation will visit the nodes as: A, E, F, B, D, C, G. The non-recursive implementation is similar to breadth-first search but differs from it in two ways: it uses a stack instead of a queue, and