Search results
Results from the WOW.Com Content Network
Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime's square). In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.
The sieve methods discussed in this article are not closely related to the integer factorization sieve methods such as the quadratic sieve and the general number field sieve. Those factorization methods use the idea of the sieve of Eratosthenes to determine efficiently which members of a list of numbers can be completely factored into small primes.
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.
Sieve method, or the method of sieves, can mean: in mathematics and computer science, the sieve of Eratosthenes, a simple method for finding prime numbers in number theory, any of a variety of methods studied in sieve theory; in combinatorics, the set of methods dealt with in sieve theory or more specifically, the inclusion–exclusion principle
The Legendre sieve has a problem with fractional parts of terms accumulating into a large error, which means the sieve only gives very weak bounds in most cases. For this reason it is almost never used in practice, having been superseded by other techniques such as the Brun sieve and Selberg sieve. However, since these more powerful sieves are ...
Eratosthenes' sieve in Javascript Archived 2001-03-01 at the Wayback Machine; About Eratosthenes' methods, including a Java applet; How the Greeks estimated the distances to the Moon and Sun; Measuring the Earth with Eratosthenes' method; List of ancient Greek mathematicians and contemporaries of Eratosthenes
Just use three colours, one for the number used is the current step of the sieve, one for non-primes and then one for primes. And highlight clearly you start fron n 2 when using n in the sieve by making the number flash or something. C e n t y 22:02, 28 September 2007 (UTC) Oppose per centy.
In spite of Gilbreath's concern in the original article, by this time the code had become almost universal for testing, and one of the articles remarked that "The Sieve of Eratosthenes is a mandatory benchmark". [13] It was included in the Byte UNIX Benchmark Suite introduced in August 1984. [16]