Search results
Results from the WOW.Com Content Network
Multiplication: Multiplication algorithm — general discussion, simple methods; Karatsuba algorithm — the first algorithm which is faster than straightforward multiplication; Toom–Cook multiplication — generalization of Karatsuba multiplication; Schönhage–Strassen algorithm — based on Fourier transform, asymptotically very fast
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying relatively small numbers. To multiply two numbers with n digits using this method, one needs about n 2 operations.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Common tools in early arithmetic education are number lines, addition and multiplication tables, counting blocks, and abacuses. [186] Later stages focus on a more abstract understanding and introduce the students to different types of numbers, such as negative numbers, fractions, real numbers, and complex numbers.
This final form is unique; in other words, it is independent of the sequence of row operations used. For example, in the following sequence of row operations (where two elementary operations on different rows are done at the first and third steps), the third and fourth matrices are the ones in row echelon form, and the final matrix is the ...
A final distinctive feature in CLU is parallel assignment (multiple assignment), where more than one variable can appear on the left hand side of an assignment operator. For instance, writing x,y := y,x would exchange values of x and y. In the same way, functions could return several values, like x,y,z := f(t).
A straightforward algorithm to multiply numbers in Montgomery form is therefore to multiply aR mod N, bR mod N, and R′ as integers and reduce modulo N. For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above.