Search results
Results from the WOW.Com Content Network
The cardinality or "size" of a multiset is the sum of the multiplicities of all its elements. For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6.
In the object-oriented application programming paradigm, which is related to database structure design, UML class diagrams may be used for object modeling. In that case, object relationships are modeled using UML associations, and multiplicity is used on those associations to denote cardinality. Here are some examples: [5]
HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators ...
Inclusion–exclusion illustrated by a Venn diagram for three sets. Generalizing the results of these examples gives the principle of inclusion–exclusion. To find the cardinality of the union of n sets: Include the cardinalities of the sets. Exclude the cardinalities of the pairwise intersections.
The notion of cardinality, as now understood, was formulated by Georg Cantor, the originator of set theory, in 1874–1884. Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three.
In graph theory, the metric dimension of a graph G is the minimum cardinality of a subset S of vertices such that all other vertices are uniquely determined by their distances to the vertices in S. Finding the metric dimension of a graph is an NP-hard problem; the decision version, determining whether the metric dimension is less than a given ...
In systems analysis, a one-to-many relationship is a type of cardinality that refers to the relationship between two entities (see also entity–relationship model). For example, take a car and an owner of the car. The car can only be owned by one owner at a time or not owned at all, and an owner could own zero, one, or multiple cars.
For example, a machine with states {,,,} has a variety of four states or two bits. The variety of a sequence or multiset is the number of distinct symbols in it. For example, the sequence a , b , c , c , c , d {\displaystyle a,b,c,c,c,d} has a variety of four.