Search results
Results from the WOW.Com Content Network
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields.
The symmetry of the tensor is as for a general stress–energy tensor in general relativity. The trace of the energy–momentum tensor is a Lorentz scalar; the electromagnetic field (and in particular electromagnetic waves) has no Lorentz-invariant energy scale, so its energy
If the energy–momentum tensor T μν is that of an electromagnetic field in free space, i.e. if the electromagnetic stress–energy tensor = (+) is used, then the Einstein field equations are called the Einstein–Maxwell equations (with cosmological constant Λ, taken to be zero in conventional relativity theory): + = (+).
the mass–energy equivalence formula which gives the energy in terms of the momentum and the rest mass of a particle. The equation for the mass shell is also often written in terms of the four-momentum ; in Einstein notation with metric signature (+,−,−,−) and units where the speed of light c = 1 {\displaystyle c=1} , as p μ p μ ≡ p ...
The stress–energy tensor of a relativistic pressureless fluid can be written in the simple form T μ ν = ρ 0 U μ U ν . {\displaystyle T^{\mu \nu }=\rho _{0}U^{\mu }U^{\nu }.} Here, the world lines of the dust particles are the integral curves of the four-velocity U μ {\displaystyle U^{\mu }} and the matter density in dust's rest frame is ...
In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the stress–energy tensor that is constructed from the canonical stress–energy tensor and the spin current so as to be symmetric yet still conserved. In a classical or quantum local field theory, the generator of Lorentz transformations can be written as an integral
The energy and momentum of an object measured in two inertial frames in energy–momentum space – the yellow frame measures E and p while the blue frame measures E ′ and p ′. The green arrow is the four-momentum P of an object with length proportional to its rest mass m 0.
In the theory of general relativity, a stress–energy–momentum pseudotensor, such as the Landau–Lifshitz pseudotensor, is an extension of the non-gravitational stress–energy tensor that incorporates the energy–momentum of gravity. It allows the energy–momentum of a system of gravitating matter to be defined.