enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiple subset sum - Wikipedia

    en.wikipedia.org/wiki/Multiple_subset_sum

    The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem . The input to the problem is a multiset S {\displaystyle S} of n integers and a positive integer m representing the number of subsets.

  3. Sum and Product Puzzle - Wikipedia

    en.wikipedia.org/wiki/Sum_and_Product_Puzzle

    The Sum and Product Puzzle, also known as the Impossible Puzzle because it seems to lack sufficient information for a solution, is a logic puzzle. It was first published in 1969 by Hans Freudenthal, [1] [2] and the name Impossible Puzzle was coined by Martin Gardner. [3] The puzzle is solvable, though not easily. There exist many similar puzzles.

  4. Profit maximization - Wikipedia

    en.wikipedia.org/wiki/Profit_maximization

    Profit maximization using the total revenue and total cost curves of a perfect competitor. To obtain the profit maximizing output quantity, we start by recognizing that profit is equal to total revenue minus total cost (). Given a table of costs and revenues at each quantity, we can either compute equations or plot the data directly on a graph.

  5. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]

  6. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.

  7. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test . One can also use this technique to prove Abel's test : If ∑ n b n {\textstyle \sum _{n}b_{n}} is a convergent series , and a n {\displaystyle a_{n}} a bounded monotone sequence , then S N = ∑ n = 0 N a n b n {\textstyle S_{N}=\sum _{n=0}^{N}a_{n}b_{n ...

  8. Makespan - Wikipedia

    en.wikipedia.org/wiki/Makespan

    In operations research, the makespan of a project is the length of time that elapses from the start of work to the end. This type of multi-mode resource constrained project scheduling problem (MRCPSP) seeks to create the shortest logical project schedule, by efficiently using project resources, adding the lowest number of additional resources as possible to achieve the minimum makespan. [1]

  9. Microsoft Access - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Access

    While Microsoft fixed this problem for Jet 3.5/Access 97 post-release, it never fixed the issue with Jet 3.0/Access 95. The native Access database format (the Jet MDB Database) has also evolved over the years. Formats include Access 1.0, 1.1, 2.0, 7.0, 97, 2000, 2002, and 2007.