Search results
Results from the WOW.Com Content Network
Bessel functions describe the radial part of vibrations of a circular membrane.. Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation + + = for an arbitrary complex number, which represents the order of the Bessel function.
the Bessel-Clifford function evaluated at n=3 divided by 22 as C(3 divided 22,z) from -2-2i to 2+2i. In mathematical analysis, the Bessel–Clifford function, named after Friedrich Bessel and William Kingdon Clifford, is an entire function of two complex variables that can be used to provide an alternative development of the theory of Bessel functions.
The Fourier–Bessel series of a function f(x) with a domain of [0, b] satisfying f(b) = 0. Bessel function for (i) = and (ii) =.: [,] is the representation of that function as a linear combination of many orthogonal versions of the same Bessel function of the first kind J α, where the argument to each version n is differently scaled, according to [1] [2] ():= (,) where u α,n is a root ...
In mathematics, a Jackson q-Bessel function (or basic Bessel function) is one of the three q-analogs of the Bessel function introduced by Jackson (1906a, 1906b, 1905a, 1905b). The third Jackson q-Bessel function is the same as the Hahn–Exton q-Bessel function.
It was originally developed to compute tables of the modified Bessel function [2] but also applies to Bessel functions of the first kind and has other applications such as computation of the coefficients of Chebyshev expansions of other special functions. [3]
In mathematics, the Bessel polynomials are an orthogonal sequence of polynomials. There are a number of different but closely related definitions. There are a number of different but closely related definitions.
In mathematics, the Hahn–Exton q-Bessel function or the third Jackson q-Bessel function is a q-analog of the Bessel function, and satisfies the Hahn-Exton q-difference equation (Swarttouw ). This function was introduced by Hahn ( 1953 ) in a special case and by Exton ( 1983 ) in general.
The following table gives an overview of Green's functions of frequently appearing differential operators, where = + +, = +, is the Heaviside step function, () is a Bessel function, () is a modified Bessel function of the first kind, and () is a modified Bessel function of the second kind. [2]