enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangential and normal components - Wikipedia

    en.wikipedia.org/wiki/Tangential_and_normal...

    Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.

  3. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    Since the differential equation is first order, it only puts a condition on the tangent plane to the graph, so that any function everywhere tangent to a solution must also be a solution. The same idea underlies the solution of a first order equation as an integral of the Monge cone. [5]

  4. Method of normals - Wikipedia

    en.wikipedia.org/wiki/Method_of_normals

    In calculus, the method of normals was a technique invented by Descartes for finding normal and tangent lines to curves. It represented one of the earliest methods for constructing tangents to curves. The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would ...

  5. Slope field - Wikipedia

    en.wikipedia.org/wiki/Slope_field

    Solutions to a slope field are functions drawn as solid curves. A slope field shows the slope of a differential equation at certain vertical and horizontal intervals on the x-y plane, and can be used to determine the approximate tangent slope at a point on a curve, where the curve is some solution to the differential equation.

  6. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    If = + is the distance from c 1 to c 2 we can normalize by =, =, = to simplify equation (1), resulting in the following system of equations: + =, + =; solve these to get two solutions (k = ±1) for the two external tangent lines: = = + = (+) Geometrically this corresponds to computing the angle formed by the tangent lines and the line of ...

  7. Bifurcation theory - Wikipedia

    en.wikipedia.org/wiki/Bifurcation_theory

    Phase portrait showing saddle-node bifurcation. Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family of curves, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations.

  8. Integral curve - Wikipedia

    en.wikipedia.org/wiki/Integral_curve

    This equation says that the vector tangent to the curve at any point x(t) along the curve is precisely the vector F(x(t)), and so the curve x(t) is tangent at each point to the vector field F. If a given vector field is Lipschitz continuous , then the Picard–Lindelöf theorem implies that there exists a unique flow for small time.

  9. Singular solution - Wikipedia

    en.wikipedia.org/wiki/Singular_solution

    A singular solution in this stronger sense is often given as tangent to every solution from a family of solutions. By tangent we mean that there is a point x where y s (x) = y c (x) and y' s (x) = y' c (x) where y c is a solution in a family of solutions parameterized by c. This means that the singular solution is the envelope of the family of ...