Search results
Results from the WOW.Com Content Network
Geometric group theory grew out of combinatorial group theory that largely studied properties of discrete groups via analyzing group presentations, which describe groups as quotients of free groups; this field was first systematically studied by Walther von Dyck, student of Felix Klein, in the early 1880s, [2] while an early form is found in the 1856 icosian calculus of William Rowan Hamilton ...
A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph, which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order, and corresponding Hasse diagrams. An important example is in the Coxeter groups.
Geometric group theory attacks these problems from a geometric viewpoint, either by viewing groups as geometric objects, or by finding suitable geometric objects a group acts on. [7] The first idea is made precise by means of the Cayley graph , whose vertices correspond to group elements and edges correspond to right multiplication in the group.
In mathematics, geometric group theory is the study of groups by geometric methods. See also Category:Combinatorial group theory . The main article for this category is Geometric group theory .
In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by ...
Let G be a one-relator group given by presentation . Then G satisfies the following version of the Tits alternative. If G is torsion-free then every subgroup of G either contains a free group of rank 2 or is solvable. If G has nontrivial torsion, then every subgroup of G either contains a free group of rank 2, or is cyclic, or is infinite ...
Geometric group theory is a relatively new area of mathematics beginning around the late 1980s [1] which explores finitely generated groups, and seeks connections between their algebraic properties and the geometric spaces on which these groups act.
In geometric group theory, a geometry is any proper, geodesic metric space. An action of a finitely-generated group G on a geometry X is geometric if it satisfies the following conditions: Each element of G acts as an isometry of X. The action is cocompact, i.e. the quotient space X/G is a compact space.