Search results
Results from the WOW.Com Content Network
Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.
Newton expands C(r) in a series—now known as a Taylor expansion—in powers of the distance r, one of the first appearances of such a series. [27] By equating the resulting inverse-cube force term with the inverse-cube force for revolving orbits, Newton derives an equivalent angular scaling factor k for nearly circular orbits: [24]
Substituting the mass of Mars for M and the Martian sidereal day for T and solving for the semimajor axis yields a synchronous orbit radius of 20,428 km (12,693 mi) above the surface of the Mars equator. [3] [4] [5] Subtracting Mars's radius gives an orbital altitude of 17,032 km (10,583 mi). Two stable longitudes exist - 17.92°W and 167.83°E.
This model is developed from 16 years of radio tracking data from Mars Global Surveyor (MGS), Mars Odyssey and Mars Reconnaissance Orbiter (MRO), as well as the MOLA topography model and provides a global resolution of 115 km. [13] A separate free-air gravity anomaly map, Bouguer gravity anomaly map and a map of crustal thickness were produced ...
For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.
A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit. The elliptical orbits of planets were indicated by calculations of the orbit of Mars.
At the bottom of the mantle lies a basal liquid silicate layer approximately 150–180 km thick. [44] [54] Mars's iron and nickel core is completely molten, with no solid inner core. [55] [56] It is around half of Mars's radius, approximately 1650–1675 km, and is enriched in light elements such as sulfur, oxygen, carbon, and hydrogen. [57] [58]
The InSight mission to Mars launched with a C 3 of 8.19 km 2 /s 2. [5] The Parker Solar Probe (via Venus) plans a maximum C 3 of 154 km 2 /s 2. [6] Typical ballistic C 3 (km 2 /s 2) to get from Earth to various planets: Mars 8-16, [7] Jupiter 80, Saturn or Uranus 147. [8] To Pluto (with its orbital inclination) needs about 160–164 km 2 /s 2. [9]