Search results
Results from the WOW.Com Content Network
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4.The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1.
Formally, a function of n variables is a function whose domain is a set of n-tuples. [note 3] For example, multiplication of integers is a function of two variables, or bivariate function, whose domain is the set of all ordered pairs (2-tuples) of integers, and whose codomain is the set of
For example, as a function from the integers to the integers, the doubling function () = is not surjective because only the even integers are part of the image. However, a new function f ~ ( n ) = 2 n {\displaystyle {\tilde {f}}(n)=2n} whose domain is the integers and whose codomain is the even integers is surjective.
A function f from X to Y.The blue oval Y is the codomain of f.The yellow oval inside Y is the image of f, and the red oval X is the domain of f.. In mathematics, a codomain or set of destination of a function is a set into which all of the output of the function is constrained to fall.
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().
However it is done, the variable ceases to be an independent variable on which the value of the expression depends, whether that value be a truth value or the numerical result of a calculation, or, more generally, an element of an image set of a function. While the domain of discourse in many contexts is understood, when an explicit range of ...