Search results
Results from the WOW.Com Content Network
Bipolar neurons exist within the vestibular nerve as it is responsible for special sensory sensations including hearing, equilibrium and motion detection. The majority of the bipolar neurons belonging to the vestibular nerve exist within the vestibular ganglion with axons extending into the maculae of utricle and saccule as well as into the ...
Afferent neurons innervate cochlear inner hair cells, at synapses where the neurotransmitter glutamate communicates signals from the hair cells to the dendrites of the primary auditory neurons. There are far fewer inner hair cells in the cochlea than afferent nerve fibers – many auditory nerve fibers innervate each hair cell.
The exact mechanism by which sound is transmitted by the neurons of the cochlear nerve is uncertain; the two competing theories are place theory and temporal theory. The vestibular nerve travels from the vestibular system of the inner ear. The vestibular ganglion houses the cell bodies of the bipolar neurons and extends processes to five ...
The sensory nervous system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory neurons (including the sensory receptor cells), neural pathways, and parts of the brain involved in sensory perception and interoception.
Temporal envelope (ENV) and temporal fine structure (TFS) are changes in the amplitude and frequency of sound perceived by humans over time. These temporal changes are responsible for several aspects of auditory perception, including loudness, pitch and timbre perception and spatial hearing.
The neurons of the auditory cortex of the brain are able to respond to pitch. Studies in the marmoset monkey have shown that pitch-selective neurons are located in a cortical region near the anterolateral border of the primary auditory cortex. This location of a pitch-selective area has also been identified in recent functional imaging studies ...
Type II neurons on the other hand innervate outer hair cells. However, there is significantly greater convergence of this type of neuron towards the apex end in comparison with the basal end. A 1:30-60 ratio of innervation is seen between Type II neurons and outer hair cells which in turn make these neurons ideal for electromechanical feedback. [9]
Neurons whose cell bodies lie in the spiral ganglion are strung along the bony core of the cochlea, and send fibers into the central nervous system (CNS). These bipolar neurons are the first neurons in the auditory system to fire an action potential, and supply all of the brain's auditory input.