enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confocal microscopy - Wikipedia

    en.wikipedia.org/wiki/Confocal_microscopy

    Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]

  3. Scanning laser ophthalmoscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_laser_ophthalmoscopy

    Scanning laser ophthalmoscopy developed as a method to view a distinct layer of the living eye at the microscopic level. The use of confocal methods to diminish extra light by focusing detected light through a small pinhole made possible the imaging of individual layers of the retina with greater distinction than ever before. [4]

  4. Near-field scanning optical microscope - Wikipedia

    en.wikipedia.org/wiki/Near-field_scanning...

    Here, λ 0 is the wavelength in vacuum; NA is the numerical aperture for the optical component (maximum 1.3–1.4 for modern objectives with a very high magnification factor). Thus, the resolution limit is usually around λ 0 /2 for conventional optical microscopy. [17]

  5. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    The limits on focusing or collimating a laser beam are very similar to the limits on imaging with a microscope or telescope. The only difference is that laser beams are typically soft-edged beams. This non-uniformity in light distribution leads to a coefficient slightly different from the 1.22 value familiar in imaging.

  6. Objective (optics) - Wikipedia

    en.wikipedia.org/wiki/Objective_(optics)

    One of the most important properties of microscope objectives is their magnification.The magnification typically ranges from 4× to 100×. It is combined with the magnification of the eyepiece to determine the overall magnification of the microscope; a 4× objective with a 10× eyepiece produces an image that is 40 times the size of the object.

  7. Super-resolution microscopy - Wikipedia

    en.wikipedia.org/wiki/Super-resolution_microscopy

    A 4Pi microscope is a laser-scanning fluorescence microscope with an improved axial resolution. The typical value of 500–700 nm can be improved to 100–150 nm, which corresponds to an almost spherical focal spot with 5–7 times less volume than that of standard confocal microscopy .

  8. Magnification - Wikipedia

    en.wikipedia.org/wiki/Magnification

    Stepwise magnification by 6% per frame into a 39-megapixel image. In the final frame, at about 170x, an image of a bystander is seen reflected in the man's cornea. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a size ratio called optical magnification.

  9. Stereo microscope - Wikipedia

    en.wikipedia.org/wiki/Stereo_microscope

    Some stereo microscopes can deliver a useful magnification up to 100×, comparable to a 10× objective and 10× eyepiece in a normal compound microscope, although the magnification is often much lower. This is around one tenth the useful resolution of a normal compound optical microscope.