Search results
Results from the WOW.Com Content Network
In the mathematical discipline of graph theory, a graph labeling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. [1] Formally, given a graph G = (V, E), a vertex labeling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph.
We first assign different binary values to elements in the graph. The values "0~1" at the center of each of the elements in the following graph are the elements' values, whereas the "1,2,...,7" values in the next two graphs are the elements' labels. The two concepts should not be confused. 2. After the first pass, the following labels are ...
A graceful labeling. Vertex labels are in black, edge labels in red.. In graph theory, a graceful labeling of a graph with m edges is a labeling of its vertices with some subset of the integers from 0 to m inclusive, such that no two vertices share a label, and each edge is uniquely identified by the absolute difference between its endpoints, such that this magnitude lies between 1 and m ...
A coloring of a given graph is distinguishing for that graph if and only if it is distinguishing for the complement graph. Therefore, every graph has the same distinguishing number as its complement. [2] For every graph G, the distinguishing number of G is at most proportional to the logarithm of the number of automorphisms of G.
Given a graph G, we denote the set of its edges by E(G) and that of its vertices by V(G). Let q be the cardinality of E(G) and p be that of V(G). Once a labeling of the edges is given, a vertex of the graph is labeled by the sum of the labels of the edges incident to it, modulo p. Or, in symbols, the induced labeling on a vertex is given by
MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages. Although MATLAB is intended primarily for numeric computing, an optional toolbox uses the MuPAD symbolic engine allowing access to symbolic computing abilities.
Force-directed graph drawing algorithms assign forces among the set of edges and the set of nodes of a graph drawing.Typically, spring-like attractive forces based on Hooke's law are used to attract pairs of endpoints of the graph's edges towards each other, while simultaneously repulsive forces like those of electrically charged particles based on Coulomb's law are used to separate all pairs ...
Input: A graph G and a starting vertex root of G. Output: Goal state.The parent links trace the shortest path back to root [9]. 1 procedure BFS(G, root) is 2 let Q be a queue 3 label root as explored 4 Q.enqueue(root) 5 while Q is not empty do 6 v := Q.dequeue() 7 if v is the goal then 8 return v 9 for all edges from v to w in G.adjacentEdges(v) do 10 if w is not labeled as explored then 11 ...