Search results
Results from the WOW.Com Content Network
For example, galaxies that are farther than the Hubble radius, approximately 4.5 gigaparsecs or 14.7 billion light-years, away from us have a recession speed that is faster than the speed of light. Visibility of these objects depends on the exact expansion history of the universe.
For supernovae at redshift less than around 0.1, or light travel time less than 10 percent of the age of the universe, this gives a nearly linear distance–redshift relation due to Hubble's law. At larger distances, since the expansion rate of the universe has changed over time, the distance-redshift relation deviates from linearity, and this ...
Therefore, it is not remarkable that according to Hubble's law, galaxies farther than the Hubble distance recede faster than the speed of light. Such recession speeds do not correspond to faster-than-light travel. Many popular accounts attribute the cosmological redshift to the expansion of space.
The relativistic mass is the sum total quantity of energy in a body or system (divided by c 2).Thus, the mass in the formula = is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds =.
In water at room temperature supersonic speed means any speed greater than 1,440 m/s (4,724 ft/s). In solids, sound waves can be polarized longitudinally or transversely and have higher velocities. Supersonic fracture is crack formation faster than the speed of sound in a brittle material.
However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases, faster in liquids, and fastest in solids. For example, while sound travels at 343 m/s in air, it travels at 1481 m/s in water (almost 4.3 times as fast) and at 5120 m/s in iron (almost 15 times as fast).
Accretion disk jets: Why do the disks surrounding certain objects, such as the nuclei of active galaxies, emit jets along their polar axes? These jets are invoked by astronomers to do everything from getting rid of angular momentum in a forming star to reionizing the universe (in active galactic nuclei), but their origin is still not well understood.
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.