Search results
Results from the WOW.Com Content Network
The new multiple range test proposed by Duncan makes use of special protection levels based upon degrees of freedom. Let γ 2 , α = 1 − α {\displaystyle \gamma _{2,\alpha }={1-\alpha }} be the protection level for testing the significance of a difference between two means; that is, the probability that a significant difference between two ...
In statistics, Bartlett's test, named after Maurice Stevenson Bartlett, [1] is used to test homoscedasticity, that is, if multiple samples are from populations with equal variances. [2] Some statistical tests, such as the analysis of variance , assume that variances are equal across groups or samples, which can be checked with Bartlett's test.
Re-administering the same test to the same group at some later time; Correlating the first set of scores with the second; The correlation between scores on the first test and the scores on the retest is used to estimate the reliability of the test using the Pearson product-moment correlation coefficient: see also item-total correlation.
Homogeneity can be studied to several degrees of complexity. For example, considerations of homoscedasticity examine how much the variability of data-values changes throughout a dataset. However, questions of homogeneity apply to all aspects of the statistical distributions, including the location parameter.
The Cochran's Q test is an extension of the McNemar's test for more than two "treatments". The Liddell's exact test is an exact alternative to McNemar's test. [10] [11] The Stuart–Maxwell test is different generalization of the McNemar test, used for testing marginal homogeneity in a square table with more than two rows/columns. [12] [13] [14]
The null hypothesis of this chi-squared test is homoscedasticity, and the alternative hypothesis would indicate heteroscedasticity. Since the Breusch–Pagan test is sensitive to departures from normality or small sample sizes, the Koenker–Bassett or 'generalized Breusch–Pagan' test is commonly used instead.
Statistical testing for a non-zero heterogeneity variance is often done based on Cochran's Q [13] or related test procedures. This common procedure however is questionable for several reasons, namely, the low power of such tests [14] especially in the very common case of only few estimates being combined in the analysis, [15] [7] as well as the specification of homogeneity as the null ...
The value q s is the sample's test statistic. (The notation | x | means the absolute value of x; the magnitude of x with the sign set to +, regardless of the original sign of x.) This q s test statistic can then be compared to a q value for the chosen significance level α from a table of the studentized range distribution.